A theoretical investigation on the vibrational characteristics and torsional dynamic response of circumferentially cracked turbo-generator shafts
نویسنده
چکیده
Turbo-generator shafts are often subjected to complex dynamic torsional loadings, resulting in generation and propagation of circumferential cracks. Mode III fatigue crack growth generally results in a fracture surface consisting of peaks and valleys, resembling a factory roof. The fracture surface roughness depends on the material microstructure, the material yield strength, and the applied cyclic torque amplitude. This crack pattern can severely affect the vibration characteristics of the shafts. The accurate evaluation of the torsional dynamic response of the turbo-generator shafts entails considering the local sources of energy loss in the crack vicinity. The two most common sources of the energy loss are the local energy loss due to the plasticity at the crack tip and frictional energy loss due to interaction of mutual crack surfaces. A theoretical procedure for evaluating the values of the system loss factors corresponding to these sources of energy loss is presented. Furthermore, the local flexibility is obtained by evaluating the resistance of the cracked section of the shaft to the rotational displacement. The shaft material is assumed to be elastic perfectly plastic. The effects of the applied Mode III stress intensity factor and the crack surface pattern parameters on the energy loss due to the friction and the energy loss due to the plasticity at the crack tip are investigated. The results show that depending on the amplitude of the applied Mode III stress intensity factor, one of these energy losses may dominate the total energy loss in the circumferentially cracked shaft. The results further indicate that the torsional dynamic response of the turbo-generator shaft is significantly affected by considering these two sources of the local energy loss. 2005 Elsevier Ltd. All rights reserved.
منابع مشابه
The effect of crack surface interaction on the stress intensity factor in Mode III crack growth in round shafts
Turbine-generator shafts are often subjected to a complex transient torsional loading. Such transient torques may initiate and propagate a circumferential crack in the shafts. Mode III crack growth in turbo-generator shafts often results in a fracture surface morphology resembling a factory roof. The interaction of the mutual fracture surfaces results in a pressure and a frictional stress field...
متن کاملA Two-Disk Extended Jeffcott Rotor Model Distinguishing a Shaft Crack from Other Rotating Asymmetries
A mathematical model of a cracked rotor and an asymmetric rotor with two disks representing a turbine and a generator is uti lized to study the vibrations due to imbalance and side load. Nonlinearities typically related with a “breathing” crack are included using a Mayes steering function. Numerical simulations demonstrate how the variations of rotor parameters affect the vibration response an...
متن کاملDynamic Response of Multi-cracked Beams Resting on Elastic Foundation
Cracks cause to change dynamic response of beams and make discontinuity in slope of the deflection of the beams. The dynamic analysis of the Euler-Bernoulli cracked beam on the elastic foundation subjected to the concentrated load is presented in this paper. The stiffness of the elastic foundation and elastic supports influence on vibrational characteristics of the cracked beam. The Dynamic Gre...
متن کاملTorsional Dynamic Response of a Shaft With Longitudinal and Circumferential Cracks
Turbo generator shafts are often subjected to cyclic torsion resulting in formation of large longitudinal cracks as well as circumferential cracks. The presence of these cracks could greatly impact the shaft resonance frequencies. In this paper, dynamic response of a shaft with longitudinal and circumferential cracks is investigated through a comprehensive analytical study. The longitudinally c...
متن کاملSurface Energy and Elastic Medium Effects on Torsional Vibrational Behavior of Embedded Nanorods
In this paper surface energy and elastic medium effects on torsional vibrational behavior of nanorods are studied. The surface elasticity theory is used to consider the surface energy effects and the elastic medium is modeled as torsional springs attached to the nanorod. At the next step, Hamilton’s principle is utilized to derive governing equations and boundary conditions. Then, with the aid ...
متن کامل